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Abstract
The structure factor, pair distribution function, screened impurity potential,
density of screening charge, and exchange and screened exchange energies
have been theoretically investigated for a semiconductor quantum wire using
an improved random phase approximation that takes into account the local
field corrections within the Hubbard approximation. Our approach enabled
us to obtain approximate analytical results on some of the aspects and to
greatly simplify the computation task on others. However, computed results
from our simple approach show very good agreement with those obtained by
performing cumbersome numerical solutions for the structure factor, density–
density response function and the static local field corrections, within the
Singwi–Tosi–Land–Sjölander approximation. Our investigations suggest that:
(i) the magnitude of the screened impurity potential and the average distribution
of electrons about an electron at larger distances are enhanced on reducing
the width of quantum wire, and (ii) the exchange interactions strengthen on
narrowing the quantum wire and on increasing the carrier density. Friedel
oscillations are seen in both our computed screened potential and the density
of screening charge.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many body effects play an important role in one-dimensional electron gas (1DEG), quasi-
1DEG and two-dimensional electron gas (2DEG) because of severe restrictions in the phase
space. There have been several attempts to understand the many body aspects of 1DEG and
2DEG [1–11]. Various approximations such as the Thomas–Fermi approximation (TFA),
the random phase approximation (RPA) and the improved RPA (IRPA) that incorporate local
field corrections (LFC) have been employed to study the effect of many body interactions on
the properties of 1DEG and 2DEG. In the case of 1DEG, certain properties such as plasma
oscillations can be very well understood within RPA, while RPA gives grossly unphysical
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results on some of the ground state properties such as the pair-correlation function and self-
energy. The ground state properties of 1DEG and 2DEG have been investigated beyond
RPA by taking into account the LFC through approximations such as the Singwi–Tosi–Land–
Sjölander (STLS) approximation. The phenomenon of screening and the many body aspects
(MBA) that involve screening are the simplest and most important manifestations of electron–
electron interactions. Also, the screening is a phenomenon influencing and even determining
much of the physical world, from cosmic plasmas to lightning propagation, electronic devices,
electrochemical machining, biopolymers, membranes and neuronal activity, and therefore has
an application to materials science, chemistry and biology. In addition to electron scattering
from disorder/impurity, screening of the electron–electron interaction is one of the most
important effects that make possible the use of the free electron or quasi-particle model in
describing the properties of 1DEG and 2DEG [12, 13].

It is widely believed that the properties of interacting 1DEG can be better described within
the Tomonaga–Luttinger (TL) model, where elementary excitations are of bosonic character
rather than the Fermionic nature encountered in Fermi liquid (FL) [14–16]. However, there
have been very few convincing experimental demonstrations of TL liquid in real 1DEG or quasi-
1DEG systems, despite intensive theoretical interest [17–21]. Contrary to what one might
expect based on the well-established TL model theoretical projections, the experimental data
obtained on 1D structures from measurements on photoluminescence, inelastic light scattering
(Raman scattering), far infrared spectroscopy, capacitance studies, etc, can be successfully
explained on the basis of normal 1D FL theory [4, 22]. This fact is also endorsed by the success
of other theories, such as the Landauer–Buttiker formula that treats electrons in mesoscopic
quasi 1D systems as non-interacting entities [23]. These arguments suggest that ordinary FL
theory is valid in the presence of impurity scattering, which always exists (however weak it
may be), in a real 1D electron system at finite temperature. The decay time of single electron
excitation is important for the resurrection of the FL theory and it also determines the magnitude
and temperature dependence of the quantum corrections to the conductivity. The excitations
decay more rapidly when there is disorder in a system.

The dielectric function (DF) formalism of a solid leads to theoretical understanding
of various MBA such as screening of the impurity potential, optical properties, collective
excitations, exchange and correlation energy, self energy, static structure factor S(q), pair-
distribution function g(r), LFC and density of screened charge ns(r). q and r are the wavevector
and position vector, respectively. The g(r) is an average distribution of electrons about any
electron in a solid, and it is defined as the probability that another particle is at position r if there
is already one at r = 0. The screened potential (SP) about a point charge diverges for r → 0, as
do all coulomb potentials. However, the ns(r) about a point charge impurity can remain finite
even at the origin r = 0. The DF models based on TFA, RPA and IRPA explain successfully,
but not completely, the phenomenon of screening and MBA of 3D electron gas [24–26]. This
led to the recent interest in probing theoretically the phenomenon of screening and MBA under
novel conditions, in 1D and 2D electron gas with the use of RPA and IRPA. The manner in
which mobile charge carriers interact with each other and shield the bare coulomb potential
depends on the dimensions of the system and a reduction in the dimensionality of the system
reduces the screening effects. More elaborately the screening is weaker in 1D than in 2D,
which in turn is weaker in comparison to 3D electron gas. The screening cloud in 2D is
confined to the plane of the layer and cannot surround the external charge as perfectly as in 3D
and similarly in 1D the Fermi surface consisting two planes at ±kF cannot shield the external
charge as effectively as in the case of 2D and 3D. kF is a Fermi wavevector.

Recently, there have been theoretical studies of the behaviour of the SP for a small
wavevector using TFA [24], and of MBA with the use of IRPA [1–3, 10, 11], for a quantum wire
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(QW). The TFA results exhibit an unphysical divergence in the electron density as r → 0,
and they are found inadequate to reproduce the oscillations called the Friedel oscillations
resulting from the abrupt change in screening at a wavevector equal to 2kF. These oscillations
dominate the long-range behaviour of SP, which is a direct result of the sharpness of the
Fermi-distribution, and states with k > kF are unoccupied while those with k < kF are filled
at T = 0. These oscillations have been found to occur in 3D, 2D and 1D systems at low
temperatures. In 1D and quasi-1D systems, the intrinsic energies involved are comparable to
the experimental temperature and the TFA, which is analogous to the small wavevector limit
of RPA results, can hold good to a reasonable degree. However, in a 1D electron gas or a
semiconductor QW, the plasmon dissipation goes to zero as the momentum q gets smaller
and the dynamical effects become prominent. These low energy virtual plasmon excitations
can be crucial in dynamical screening, as the elementary excitations here are different from
those of non-interacting systems. To include plasma effects and the long-range oscillations
it is desirable to go over the TFA and study the screening effects within the RPA or IRPA.
The past studies on S(q), g(r), exchange and correlation energy, compressibility and ns(r)

for 1D and quasi-1D electron gas have been performed using IRPA that incorporates the LFC
in the self-consistent STLS approach [1–3, 10]. These calculations include static as well
as dynamical LFC and they are claimed to be very close to Monte Carlo findings. However,
simultaneous numerical solutions of equations for S(q), LFC and the density–density response
function χ(q, ω) are to be performed in these studies, which is a heavy computational task. No
analytical results on any of the MBA are possible within the STLS approach and the numerically
computed results lack convincing simplicity. This motivated us to perform a theoretical study
on the MBA of QW using the IRPA that incorporates LFC and the essential physics of 1D
electron gas in a simple manner. We aim to obtain approximate analytical results on some of
the physical properties and to simplify the computational task on many others. Our approach
incorporates the LFC within the Hubbard approximation (HA) to describe the particle–particle
interaction in a simple manner. The necessary formalism used in our work is given in section 2.
Results and the subsequent discussions on them are reported in section 3 and finally the work
is concluded in section 4.

2. Model and essential formalism

We consider an electron gas with δ-function type confinement along the z-axis and an infinite
potential well type confinement along the y-axis. We assume that the electron wavefunction
vanishes at boundaries of the wire across the y-axis, at y = ±a/2, where a is the width of
a QW. It is further assumed that electrons perform unrestricted motion along the x-axis and
the band for motion is parabolic; ξk = h̄2k2

2m∗ − µ, where m∗ is the effective electron band mass
and µ is the chemical potential. This is a reasonable assumption for a QW where electron
density is low (∼106 cm−1), occupying only the lowest (ground) subband. The bare coulomb
potential, V 0(q), for a QW is given by [27, 29]

V 0(q, y, y ′) = 2e2

ε0
k0(q|y − y ′|), (1)

where q is a 1D wavevector and ε0 is the background dielectric constant. The k0(q|y − y ′|) is
the zeroth order modified Bessel function, which can be defined as [27]

k0(q|y − y ′|) =
∫ ∞

0
dt

exp(−|y − y ′|√t2 + q2)√
t2 + q2

. (2)
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The evaluation of V 0(q) with the use of equations (1) and (2) yields

V 0(q) = 2e2

ε0

∫ ∞

0
dt

H (λ)

λ
, (3)

with

λ =
√

t2 + q2. (4)

The H (λ) is defined as

H (λ) =
∫ a/2

−a/2
dy

∫ a/2

−a/2
dy ′ exp(−λ|y − y ′|)|φ(y)|2|φ(y ′)|2. (5)

Evaluation of equation (5) by taking envelope functionsφ(y) andφ(y ′) that vanish at y = ±a/2
gives [28]

H (λ) =
(

u

w
+

2

u

)
− 32π4

(wu)2
(1 − e−u), (6)

where u = λa and w = u2 + 4π2. For larger values of a (u � 2π), H (u) → 3/u and V 0(q)

reduces to 3πe2

ε0 |qa| , which agrees with the asymptotic results on V 0(q) reported elsewhere [29].
By contrast, for smaller values of u (�1), H (u) reduces to unity and equation (3) becomes

V 0(q) = 2e2

ε0

∫ ∞

0

dt√
t2 + q2

. (7)

The V 0(q) given by equation (7) has also been used to investigate properties of 1D electron
gas [25, 28]. The integrand of equation (7) diverges logarithmically at the upper limit when
q �= 0 and at the lower limit for q → 0. The divergence at the upper limit was cut off by taking
an upper limit, qc ≈ 1/a, to obtain V 0(q) that describes well the interactions at distances
much larger than a. The integrand in equation (3) has better convergence as compared to
that in equation (7), and it does not show logarithmic divergence at the upper limit because
H (u) → 0 when t → ∞.

V 0(q) = (e2/ε0)exko(x), (8)

with x = (qb/2)2, where b is the lateral width of QW determined by the confining oscillator
frequency; this has also been used in the literature [1, 2]. We find that our equation (3), as
compared to equations (7) and (8), gives a better description of the bare coulomb potential for
a QW and it is valid at all values of q and a. On the other hand, the validity of equation (8)
becomes questionable for a QW of smaller width (a < 5 nm).

The quantity of central importance in studying the MBA and screening phenomenon is
χ(q, ω), defined by

χ(q, ω) = χ0(q, ω)

ε(q, ω)
(9)

where DF, ε(q, ω) is defined as [30, 31]

ε(q, ω) = 1 − V eff(q)χ0(q, ω). (10)

χ0(q, ω) is the 1D irreducible polarizability function. The effective electron–electron
interaction, V eff(q) is defined by

V eff(q) = V 0(q)[1 − G(q)] (11)



Many particle aspects of a semiconductor quantum wire within an improved RPA 3047

where G(q) is the static LFC term. There have been several ways to calculate G(q) for 1D
electron gas. The HA is the simplest way to incorporate the static LFC. The G(q), within HA,
for the 3D electron gas is given by [8, 30]

G(q) = 1

2

q2

q2 + k2
F

≡ 1

2

4πe2/(q2 + k2
F)

4πe2/q2
. (12)

In terms of the bare coulomb potential, equation (12) can be rewritten as

G(q) = 1

2

V 0(

√
q2 + k2

F)

V 0(q)
. (13)

For q → 0, V eff(q) reduces to V 0(q). Equation (13) can also be used to compute G(q) for a

QW or 1D electron gas. The V 0(

√
q2 + k2

F) is obtained from equation (3) on replacing q by√
q2 + k2

F.
The χ0(q, ω) in a single subband approximation, which is valid when the Fermi energy

is much smaller than the intersubband energy difference, is given by [29]

χ0(q, ω) = 2
∫

d p

2π

n p − n p+q

ξp − ξp+q + h̄(ω + iγ )
(14)

where n p is the Fermi distribution function at T = 0 and γ is the damping parameter arising
from electron-disorder/impurity scattering. In this paper we consider the case of a QW with
a negligibly small amount of disorder (impurity) and therefore we evaluate equation (14) for
γ → 0. The real and imaginary parts of χ0(q, ω) for γ → 0 are given as

χ01(q, ω) = m∗

πq
log

[
ω2 − (Eq − qvF)

2

ω2 − (Eq + qvF)2

]
(15a)

and

χ02(q, ω) =



m∗

h̄2q
, when |Eq − qvF| � ω � (Eq + qvF),

0 otherwise
(15b)

where Eq = h̄2q2/2m∗. We intend to study the following physical quantities in this paper.

2.1. The structure factor and pair distribution function

The S(q) is defined as [1, 30]

S(q) = −1

nπ

∫ ∞

0
dω Im[χ(q, ω)] (16)

where Im stands for the imaginary part and n is the number of electrons per unit length.
Equation (16), with the use of equations (10) and (15), can be rewritten as

S(q) =
∫ ω2

ω1

dω S(q, ω) (17a)

where the dynamical structure factor, S(q, ω), is defined as

S(q, ω) = −1

nπV eff(q)

[
ε2(q, ω)

ε2
1(q, ω) + ε2

2(q, ω)

]
. (17b)

ε1(q, ω) and ε2(q, ω) are the real and imaginary parts of ε(q, ω), respectively, ω1 =
|Eq − qvF|/h̄ and ω2 = (Eq + qvF)/h̄.

The g(r) can be calculated from S(q) through a Fourier transform as follows [1, 30]:

g(r) = 1 +
1

nπ

∫ ∞

0
dq cos(qr)[S(q) − 1]. (18)
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2.2. Dielectric function and screened potential

The DF that takes into account the LFC is given by equation (10). The Fourier transformed
SP is defined as

W (q, ω) = V i (q)

ε(q, ω)
, (19)

where V i (q) = Z V 0(q) is the bare impurity potential in Fourier space. Ze is the charge on
impurity. The static screened impurity potential in real space is then obtained by performing
a 1D Fourier transform,

W (r) =
∫ ∞

−∞
dq

2π
W (q)eiqr . (20)

2.3. Density of the screening charge

The ns(r) for a QW can be calculated from [1, 30]

ns(r) = Ze
∫ ∞

−∞
dq

2π
eiqr

[
1 − 1

ε(q)

]
. (21)

2.4. Exchange energy and IRPA self-energy

The wavevector dependent exchange energy, within the IRPA, is given by [30]

Exc(k) =
∫ kF

−kF

V eff(|k − k′|)dk ′

2π
. (22a)

The screened exchange energy, also called the IRPA self-energy, is defined as [30]

E sl(k) =
∫ kF

−kF

dk ′

2π

V eff(|k − k′|)
ε(|k − k′|) . (22b)

V eff(|k − k′|) and ε(|k − k′|) are obtained from V eff(q) and ε(q, ω = 0) on replacing q by
|k − k′|.

3. Results and discussions

The formalism developed in section 2 has been applied to a GaAs-QW, which is parameterized
in terms of m∗ = 0.068 me and ε0 = 12.0 [27, 28]. Before discussing our results, we ensure
that the formalism developed in section 2 is correct and conforms to the requirement of the
conservation laws: p′ − p = q and h̄ω = ξp′ − ξp. It is to be noted that equation (15b) has
been obtained from (14) by strictly following the momentum and energy conservation laws.
We further subject our formalism to the scrutiny of the sum-rules, which are a class of exact
results. One of the sum rules that complies with conservation laws is

∫ ∞

0
ε2(q, ω)ω dω = πω2

p

2
(23a)

where ωp is the plasma frequency. Evaluation of ω-integration, with the use of equations (10)
and (15b), transforms equation (23a) to

4m∗V eff(q)

h̄2vF Eqω2
p

= π. (23b)
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Figure 1. The normalized plasma frequency is plotted as a function of the normalized wavevector.
IRPA plasma frequencies at kF = 5 × 105 cm−1 for a = 5 nm (curve-A) and for a = 20 nm
(curve-B) are shown by dot–dot and solid lines, respectively. The dash–dash line represents the
RPA plasma frequency at kF = 5 × 105 cm−1 and a = 10 nm (curve-C).

The solution of ε1(q, ωp) = 0 gives

ω2
p(q) = (Eq + qvF)

2 + 4EqqvF/(A − 1), (24)

with A = eπqh̄2/m∗ V eff (q). For smaller values of q(<0.1kF), ω2
p(q) can be approximated by

4m∗V eff(q)/π h̄2vF Eq that exactly satisfies equation (23b). However, the fulfilment of (23b)
with the use of (24) is at stake when q increases. As is seen from equation (23b) and figure 1,
ω2

p(q) with LFC is smaller than that without LFC, at all values of q . This suggests that
incorporation of LFC in the scheme extends the range of q-values over which sum-rules can
be satisfied and that the range is determined by the value of G(q). We checked the compliance
of other sum-rules too and found that the formalism presented in this paper satisfy them for
q → 0. The computed plasma frequency from equation (24) is plotted in figure 1 as a function
of q for a GaAs-QW of kF = 5 × 105 cm−1. Figure 1 shows that inclusion of LFC reduces
ωp(q) for all values of q . It has been found that ωp(q) increases on reducing the width of the
QW. It is apparent from equation (17) that the conservation laws relating to S(q) are duly taken
care of by the fulfilment of equations (23). The LFC play an important role in determining the
physical quantities that involve many body interactions and they also influence the fulfilment
of sum-rules. Our computed G(q) from equation (13) is plotted as function of q/kF in figure 2
for two values of kF (5 × 106 and 106 cm−1) and of a (5 and 10 nm). The V 0(q) used in this
paper differs from that used in prior reported work [1, 2], equation (8). Envelope functions that
abruptly vanishes at the boundaries of the QW have been used to evaluate H (λ) in equation (3),
whereas Gaussian type envelope functions have been used to obtain equation (8). We found
that our simple approach to compute G(q) provides an adequate representation of LFC in
a QW and it agrees with the G(q) computed using the self-consistent quantum mechanical
calculation based on the STLS approximation [1, 2] for the values of kF and a appropriate to
a QW. However, for the choice of certain values of kF and a, our computed G(q) has been
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Figure 2. Local field corrections, G(q), are plotted as a function of q. Curve A: kF = 5×105 cm−1

and a = 5 nm; curve B: kF = 5 × 105 cm−1 and a = 10 nm; curve C: kF = 106 cm−1 and
a = 10 nm.

found to be smaller than that computed using the STLS approximation [1, 2] at higher values
of q . At this juncture, it is difficult to say that the difference in G(q) is due to the different
approximations or due to different V 0(q) used in two approaches. Higher G(q) values result in
a better fulfilment of sum rules, at higher q values. G(q) exhibits strong q-dependence when
q is small (<2kF). It is obvious from the figure 2 that the magnitude of the LFC is enhanced
on reducing the width of the QW and reduces on increasing the carrier density. The changes
in G(q) on changing a and or changing kF are more prominent when 0.2 � q/kF � 4. At
higher values of q (>4kF), G(q) becomes almost independent of a and kF. G(q) is a measure
of the strength of the electron–electron interactions that becomes stronger on reducing either
the carrier density or a or both, for a QW.

3.1. Structure factor and pair distribution function

An analytical solution of equation (17) with the use of equation (15) is not possible. However, to
obtain an analytical result on S(q) without jeopardizing the essential physics, we write ε1(q, ω)

in what is known as a plasma pole approximation. The plasma–pole approximation ignores the
particle–hole excitations and it assigns the whole spectral weight, dictated by the f -sum rule,
to an effective collective plasma excitation, which is assumed to be a real pole of the response
function. The phase space restriction on particle–hole excitations increases the spectral weight
of the plasma excitation over a wide range of wavevectors and the collective plasma excitation
plays a more prominent role in a 1DEG, in contrast to 2D and 3D systems. The plasma–
pole approximation indeed works extremely well in calculating a variety of quantities of QW
structures [32]. In the plasma pole approximation, ε1(q, ω) ∼= 1 − ω2

p(q)/ω2. As has been
mentioned before, plasma pole approximation is consistent with conservation laws and the
sum rules. The integration over ω, after replacing ε1(q, ω) by 1 − ω2

p(q)/ω2 in equation (17),
yields
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Figure 3. The structure factor, S(q) is plotted as a function of q/kF at kF = 5 × 105 cm−1.
Numerically computed results from equation (17) are displayed for a = 20 nm (curve B), a = 5 nm
(curve C) and a = 40 nm (curve D). Analytical results from equation (25) are shown for a = 20 nm
(curve A).

S(z) = 2z2

t2
+

by2
0(2 + t)

4r t3
log

(
(ty2

2 + y2
0 − y2r)(ty2

1 + y2
0 + y1r)

(ty2
1 + y2

0 − y1r)(ty2
2 + y2

0 + y2r)

)

+
by2

0(2 − t)

2
√


t3

{
tan−1

(
2ty2 + r√




)
+ tan−1

(
2ty2 − r√




)

− tan−1

(
2ty1 − r√




)
− tan−1

(
2ty1 + r√




)}
, (25)

where z = q/kF, b = m∗V eff

zkFh̄2 , y2 = z(z + 2), y1 = z(z − 2), t = √
1 + b2, r = √

2y0(1 + t),


 =
√

4y2
0 t − r2, y2

0 = ( 8z3

A−1 ) + (z2 + 2z)2.
We computed S(z) as a function of z using equations (17) and (25) for a GaAs-QW for

kF = 5 × 105 cm−1. The integration over ω, in the computation of S(z) from equation (17)
with the use of equation (15), has been performed numerically using the Gaussian quadrature
formula. Our computed results from equation (17) for three values of a (5, 10 and 20 nm)
and from equation (25) for a = 10 nm are illustrated in figure 3. The figure exhibits that
our simple analytical result, obtained in the plasma pole approximation, shows very good
agreement with the detailed numerical result, for z � 3/2. We also computed S(q, ω), given
by equation (17b), as a function of ω using ε1(q, ω) obtained from equation (15a) and from the
plasma pole approximation. Two results exhibit excellent agreement with each for z � 3/2.
It is manifestation of the following: (i) in a QW, the prohibition of particle–hole excitations
from a large portion of the low energy phase space, which arises from the momentum–energy
conservation, increases the dominance of plasma excitations, and (ii) the oscillator strength of
the plasma excitations in a QW extends well into the range of large wavevectors and it decreases
slowly with increasing wavevector [10, 32]. The figure also displays that the structure factor
declines on reducing the width of a QW, at all values of q . We find, however, that the increase
in S(q) is not proportional to a and it tends to saturate for larger values of a, at a given q-value.
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Figure 4. Computed structure factor, S(q), as a function of q at a = 20 nm. Numerically computed
results are depicted for kF = 2.5 × 105 cm−1 (curve A) and kF = 5 × 105 cm−1 (curve B).

The effect of change in carrier density on the structure factor can be seen from figure 4, where
S(q) is plotted as a function of z for two values of kF (2.5×105 and 5×105 cm−1) at a = 20 nm.
S(q) declines on increasing the carrier density, for given values of q and a, as is obvious from
figure 4. The prior reported calculations on S(q) had been made by solving numerically the
simultaneous equations for S(q), G(q) and χ(q, ω), as their definitions are inter-dependent in
the STLS approximation [1, 2]. On the other hand, in our approach S(q), G(q) and χ(q, ω) are
defined and computed independent of each other. This greatly simplified the computation task
and also enabled us to provide analytical results on S(q) within the plasma pole approximation.
The computed S(q), as a function of q , from our simple approach shows very good agreement
with the prior reported work [1, 2, 10], however.

We computed numerically equation (18) with the use of equation (17) for two values of a
(20 and 10 nm) at kF = 5 ×105 cm−1 and with the use of equation (25) for kF = 5 ×105 cm−1

and a = 20 nm. Our computed g(r) is displayed as a function of kFr in figure 5. It is
evident from the figure that the computed g(r) with the use of analytically calculated S(q)

is in reasonably good agreement with the g(r) computed using numerically computed S(q).
We thus find that the many body effects in a QW are well described by our simple analytical
result given by equation (25). Our computed results on g(r) suggest that on decreasing the
width of QW for fixed kF, the average distribution of electrons about an electron enhances at
larger r -values and it becomes negative at smaller values of r . The IRPA fails to describe g(r)

when g(r) becomes negative. This has also been observed in the calculations of g(r) using
the STLS approximation [1, 2]. We also computed g(r) as function of r for different values
of kF and found that an increase in carrier density leads to the reduction at larger r -values and
enhancement at smaller values of r , in the average distribution of electrons about an electron
in a QW of fixed a.

3.2. Dielectric function and screened potential

We computed W (q) as function of q using equation (19) for a = 20 nm and kF = 5×105 cm−1.
Our computed IRPA and RPA results are compared with the TFA results. The screened impurity
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Figure 5. The pair distribution function, g(r), from equation (18) is plotted as a function of kFr at
kF = 5×105 cm−1. Computed results are displayed using analytical calculated S(q) at a = 20 nm
(curve A), and with the use of numerically computed S(q) from equation (17) for a = 10 nm (curve
B) and for a = 20 nm (curve C).

potential within TFA is given by [25]

WTF(q) = −2Ze2 ln(qa)

1 − qs ln(qa)
, (26)

where qs = 4/πkFa0. The a0 = h̄2/m∗e2 is the Bohr radius. The TFA is valid only for
smaller values of q < (kF). Our computed normalized screened potential, W (q)/ZεF, from
equations (19) and (26), is shown in figure 6 as a function of z when 0 � z � 2.5. The TFA is
valid only for small values of z(�2) and the TFA results go over to RPA results for z → 0, as is
seen from the figure. The TFA-SP, as compared to IRPA-SP and RPA-SP, declines more rapidly
with z and it overestimates the screening effects for z not close to zero. Interesting features
such as Friedel oscillations, which are a manifestation of logarithmic divergent behaviour of
SP at around z = 2 and dominate the long-range behaviour of SP, cannot be exhibited by
WTF(q). The logarithmic divergent behaviour at around z = 2 in computed W (q)/ZεF using
IRPA and RPA can clearly be seen from equation (15a) and figure 6. Though the overall
behaviour of the screened potential for a QW is found similar to that of 2D free electron gas,
the behaviour at z-values close to z = 2 is found to be more pronounced in the case of a QW.
This suggests more pronounced Friedel oscillations in a QW, as compared to 2D free electron
gas. We computed IRPA W (q)/ZεF and its discrete Fourier transform by taking several values
of sampling interval, 
 = z/N , for a fixed value of the number of sample points, N = 1024.
The i th value of z, zi is given by i
, with 0 � i � N . The choice of 
 determines the range of
z for which W (q)/ZεF is computed. Our computed normalized discrete Fourier transforms of
W (q)/ZεF, termed as W ( j)/ZεFkF, are plotted as a function of j in figure 7, for three values
of 
 (0.004, 0.1 and 0.4) at kF = 5 × 105 cm−1 and a = 20 nm. The j is a discrete Fourier
variable corresponding to i . The computed W ( j)/ZεFkF for 
 = 0.004 exhibits oscillatory
behaviour which is more pronounced at smaller values of j (<20), as is seen from figure 7. For

 = 0.004, z varies between 0 and 4. On increasing 
, the period of oscillations increases
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Figure 6. The normalized screened potential in Fourier space is shown as a function of q/kF using
the improved random phase approximation (curve A), the random phase approximation (curve B)
and the Thomas–Fermi approximation (curve C).
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Figure 7. The normalized discrete real space screened potential, W ( j)/ZεFkF, is displayed as a
function of j for different values of sampling parameter (
) at fixed number of points, N = 1024,
kF = 5 × 105 cm−1 and a = 20 nm. Results are shown for 
 = 0.004 and 0 � z � 4.08 (curve
A), 
 = 0.1 and 0 � z � 102 (curve B), and 
 = 0.1 and 0 � z � 408 (curve C).

and the oscillations in the range of 0 � j � 100 almost disappear when 
 > 0.1, as exhibited
in the figure. Also, it is to be noted that the magnitude of W ( j)/ZεFkF decreases on enhancing

 for j close to zero. Our computed W ( j)/ZεFkF for two values of a (20 and 4 nm) and
kF = 5 × 105 cm−1 is plotted in figure 8. As is apparent from the figure, the magnitude of the
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Figure 8. The normalized discrete real space screened potential, W ( j)/ZεFkF, is plotted as a
function of j when 
 = 0.1 and N = 1024 for a = 20 nm (curve A), and for a = 4 nm (curve B)
at kF = 5 × 105 cm−1.

screened potential enhances on reducing the width of QW at all values of r and it diverges for
r → 0 in a QW of fixed carrier density.

3.3. Density of the screening charge

The ns(r) has the dimension of charge per unit length in the case of a QW. Our computed
ns(r)/ZekF, within the IRPA and RPA is plotted as a function of kFr in figure 9 for a QW of
a = 20 nm and kF = 5 × 105 cm−1. The Friedel oscillations are also seen in ns(r)/ZekF.
The inclusion of LFC reduces the magnitude of ns(r)/ZekF at all r -values and makes it better
behaved for r → 0, as is obvious from figure 9. Unlike the screened potential of a point
charge, the density of the screening charge remains finite even for r → 0, as is obvious from
equation (21) and figure 9.

3.4. Exchange energy and IRPA self-energy

Analytical results on Exc(k) with the use of V eff(|k − k′|), given by equation (11), are
not possible. However, simple analytical results for Exc(k) can be obtained on replacing
V eff(|k − k′|) by V 0(|k − k′|) defined by equation (7). Evaluation of equation (7) on taking
1/a as the upper limit of integration gives

V 0(|k − k′|) = e2

ε0
log

[ √
(k − k ′)2a2 + 1 + 1√
(k − k ′)2a2 + 1 − 1

]
. (27)

On replacing V eff(|k − k′|) by equation (27), and then performing integration over k ′, we
obtain

Exc(k)= e2

2πaε0

[
x1 log

(√
x2

1 + 1 + 1√
x2

1 + 1 − 1

)
− x0 log

(√
x2

0 + 1 + 1√
x2

0 + 1 − 1

)
+ 2 log

(√
x2

1 + 1 + x1√
x2

0 + 1 + x0

)]
,

(28)

where x1 = (k + kF)a and x0 = (k − kF)a.



3056 S S Z Ashraf and A C Sharma

0 2 4 6 8 10 12 14
-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

B

A

D
en

si
ty

 o
f s

cr
ee

ni
ng

 c
ha

rg
e/

Z
ek

F

k
F
r

Figure 9. The normalized density of the screening charge is shown as a function kFr using the
IRPA (curve A) and the RPA (curve B) at kF = 5 × 105 cm−1 and a = 20 nm.

We computed the dimensionless exchange energy, π Exc(k)/e2kF, as a function of k/kF

from equation (22a) with the use of equation (11) and from equation (28) for three values of
a (5, 10 and 20 nm) and kF = 5 × 105 cm−1. Our computed results are displayed in figure 10.
The figure makes it clear that the simple analytical result given by equation (28) shows good
agreement with the detailed numerical result that includes the LFC. The agreement between
analytical and numerical results is very good when the width of the QW is around 10 nm.
The exchange energy enhances on decreasing the width of the QW. The computed exchange
energy is smooth at all values of k except for the discontinuity of its derivative at k = kF. We
also computed the exchange energies of 2D and 3D electron gas and found that the exchange
energy of the QW is larger than that of 2D, which in turn is larger than that of 3D-electron
gas. This is in accordance with the well-known fact that the strength of exchange interactions
enhances on reducing the dimensionality of the system.

An analytical solution of equation (22b) is not possible even if we replace V eff(|k − k′|)
by equation (27). We computed E sl(k) from equation (22b) with the use of equation (10) for
two values of a (5 and 20 nm) and two values of kF (5 × 105 and 106 cm−1). Our computed
π E sl(k)/e2kF is plotted as a function of k/kF in figure 11. The overall behaviour of E sl(k) is
similar to that of Exc(k). However, on comparing figures 10 and 11 it is interesting to note that
the magnitude of E sl(k) is roughly ten times smaller than that of Exc(k), at a given k-value.
Similar to the case of a 3D-electron gas, both Exc(k) versus k curves and E sl(k) versus k curves
exhibit steep change at around k = kF. Figure 11 shows that the IRPA self-energy enhances
on reducing the width and increasing the carrier density in a QW. We also computed E sl(k)

without LFC. As is obvious from figure 11, inclusion of LFC brings down the magnitude of
the screened exchange energy at all values of k. We also computed the normalized screened
exchange energy versus normalized wavevector for 3D and 2D electron gas and compared
them with the corresponding results of a QW. Similar to the case of exchange energy, the
screened exchange energy is also found to decline on increasing the dimensionality of the
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Figure 10. The normalized exchange energy, π Exc(k)/e2kF is plotted as function of k/kF at
kF = 5 × 105 cm−1 for a = 5 nm (curves A), a = 10 nm (curves B), and a = 20 nm (curves
C). Dot–dot curves display analytical results from equation (28), whereas solid line curves are
numerically computed results from equation (22a).

Figure 11. The normalized self-energy, π Esl(k)/e2kF, is shown as a function of k/kF from
equation (22b). The IRPA results are depicted for kF = 106 cm−1 and a = 20 nm (dash–dash
curve), kF = 5 × 105 cm−1 and a = 20 nm (dot–dot curve B), kF = 5 × 105 cm−1 and a = 5 nm
(solid curve). The RPA results are shown by dot–dot curve A at kF = 5×105 cm−1 and a = 20 nm.

system. It has also been found that the IRPA self-energy almost doubles on going from 3D to
2D or from 2D to 1D electron gas. The large value of IRPA self-energy in the case of a 1D
system, as compared to 3D and 2D systems, is the manifestation of weaker screening effects
and smaller carrier density (Fermi energy) in a 1D system. Our investigations thus suggest
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that contribution from electron–electron interactions to the single particle energy increases on
reducing the effective dimensions of a system and the use of the Fermi-liquid approach could
not be justified in describing some of the single particle properties of a 1D system without
significant impurity concentration. This could be seen in accordance with the viewpoint that a
Luttinger liquid model, as compared to a Fermi liquid model, can be more suitable to describe
the electronic properties of an impurity free 1D system.

4. Conclusions

We calculated the S(q), g(r), W (q), W ( j), ns(r), Exc(k) and E sl(k) for a QW using an
IRPA that incorporates the LFC within the Hubbard approximation. Our formalism complies
with conservation laws and sum-rules. The numerical results are displayed for a GaAs-QW.
Analytical results are also obtained on S(q) within a plasma pole approximation and on Exc(k)

using a bare coulomb potential that describes well interactions at distances larger than the width
of the QW. The analytical results show good agreement with detailed numerical results. At
all q values, S(q) declines on reducing a and increasing kF. The rate of decline is higher at
smaller q-values than that at larger values of q . The computed S(q), as a function of q , from
our simple approach shows very good agreement with the prior reported work using the STLS
approximation. On decreasing the width of the QW with fixed kF, g(r) enhances at larger
r -values, and becomes negative at smaller values of r . This suggests the failure of the IRPA in
describing g(r) at smaller values of r on reducing the width of QW. Prior reported calculations
of g(r), using the STLS approximation, also exhibit negative values of g(r) at smaller values
of r [1, 2]. Both computed SP and ns(r) exhibit the Friedel oscillations. The magnitude of
SP enhances on reducing the width of the QW at all values of r , for fixed carrier density and
it diverges for r → 0. Our calculations of Exc(k) and E sl(k) suggest that contribution from
electron–electron interactions to the single particle energy enhances on reducing the effective
dimensions of a system and the use of the Fermi-liquid approach may not be justified in
describing some of the single particle properties of a 1D system without significant impurity
concentration.
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